DOI QR코드

DOI QR Code

Effects of Cooling Rates of Coating Layer on Microstructures and Corrosion Behaviors of Zn-Al-Mg Alloy Coated Steel Sheets

Zn-Al-Mg 합금도금강판의 도금 층 냉각속도 제어에 따른 미세조직 및 부식거동 분석

  • Lee, Jae-Won (Pohang Institute of Metal Industry Advancement (POMIA)) ;
  • Kim, Sung Jin (Department of Advanced Materials Engineering, Sunchon National University)
  • 이재원 (포항금속소재산업진흥원소재솔루션연구실) ;
  • 김성진 (순천대학교신소재공학과)
  • Received : 2022.06.11
  • Accepted : 2022.06.21
  • Published : 2022.06.30

Abstract

To understand effects of cooling rates of coating layer on microstructures and corrosion behaviors of hot-dip alloy coated steel sheets (Zn-5%Al-2%Mg) in a neutral aqueous condition with chloride ion, a range of experimental and analytical methods were used in this study. Results showed that a faster cooling rate during solidification decreased the fraction of primary Zn, and increased the fraction of Zn-Al phase. In addition, interlamellar spacing became refined under a faster cooling rate. These modifications of the coating structure had higher open circuit potentials (OCP) with smaller anodic and cathodic current densities in the electrochemical potentiodynamic polarization. Surface analyses after a salt spray test showed that the increase in the Zn-Al phase in the coating formed under a faster cooling rate might have contributed to the formation of simonkolleite (Zn5(OH)8Cl2·H2O) and hydrotalcite (ZnAl2(OH)6Cl2·H2O) with a protective nature on the corroded outer surface, thus delaying the formation of red rust.

Keywords

Acknowledgement

순천대학교 교연비 사업에 의하여 연구되었음.

References

  1. H. C. Shih, J. W. Hsu, C. N. Sun, S. C. Chung, The lifetime assessment of hot-dip 5% Al-Zn coatings in chloride environments, Surface Coating Technology, 150, 70 (2002). Doi: https://doi.org/10.1016/S0257-8972(01)01508-0
  2. J. W. Lee, B. R. Park, S. J. Kim, Corrosion resistance and adhesion of paint coating film on Zn-Mg-Al hot-dip galvanized steel sheets, Korea Journal of Metals and Materials, 57, 7 (2019). Doi: http://dx.doi.org/10.3365/KJMM.2019.57.2.77
  3. S. Tanaka, K. Honda, A. Takahashi, Y. Morimoto, M. Kurosaki, H. Shindo, K. Nishimura, M. Sugiyama, The performance of Zn-Al-Mg-Si hot-dip galvanized steel sheet, 6th Galvatech, p. 153, Brussels, Belgium (2001).
  4. M. B. Moon, S. S. Cha, Effect of alloy addition in hot dip galvanizing bath on corrosion behavior of hot dip Zn coated layer, Journal of the Corrosion Science Society of Korea, 22, 11 (1992).
  5. M. Bright, S. Ellis, Minimizing zinc consumption in hot-dip galvanizing lines, Corrosion Science and Technology, 10, 43 (2011). https://doi.org/10.14773/CST.2011.10.2.043
  6. M. S. Oh, S. H. Kim, J. S. Kim, J. W. Lee, J. H. Shon, Y. S. Jin, Surface and cut-edge corrosion behavior of Zn-Mg-Al alloy-coated steel sheets as a function of the alloy coating microstructure, Metals and Materials International, 22, 26 (2016). Doi: https://doi.org/10.1007/s12540-015-5411-9
  7. J. W. Lee, S. J. Kim, M. S. Oh, Influence of alloy content on microstructure and corrosion resistance of Zn-based alloy coated steel product, Korea Journal of Metals and Materials, 85, 169 (2020). Doi: http://dx.doi.org/10.3365/KJMM.2020.58.3.169
  8. T. Prosek, J. Hagstrom, D. Persson, N. Fuertes, F. Lindberg, O. Chocholaty, C. Taxen, J. Serak, D. Thierry, Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloy on corrosion stability, Corrosion Science, 110, 71 (2016). Doi: https://doi.org/10.1016/j.corsci.2016.04.022
  9. J.W. Lee, B.R. Park, S.Y. Oh, D.W. Yun, J.K. Hwang, M.S. Oh, S.J. Kim, Mechanistic study on the cut-edge corrosion behaviors of Zn-Al-Mg alloy coated steel sheets in chloride containing environments, Corrosion Science, 160, 108170 (2019). Doi: https://doi.org/10.1016/j.corsci.2019.108170
  10. K. Nishimura, H. Shindo, K. Kato, Y. Morimoto, Proc. 4th Galvatech, p. 437, Chiba, Japan (1998).
  11. T. Prosek, D. Persson, J. Stpulil, D. Thierry, Composition of corrosion products formed on Zn-Mg, Zn-Al-Mg coatings in model atmospheric conditions, Corrosion Science, 86, 231 (2014). Doi: https://doi.org/10.1016/j.corsci.2014.05.016
  12. M. Salgueiro Azevedo, C. Allely, K. Ogle, P. Volovitch, Corrosion mechanisms of Zn (Mg, Al) coated steel: 2. The effect of Mg and Al alloying on the formation and properties of corrosion products in different electrolytes. Corrosion Science, 90, 482 (2015). Doi: https://doi.org/10.1016/j.corsci.2014.07.042
  13. P. Volovitch, T. N. Vu, C. Allely, A. A. Aal, K. Ogle, Understanding corrosion via corrosion product characterization: II. Role of alloying elements in improving the corrosion resistance of Zn-Al-Mg coatings on steel, Corrosion Science, 53, 2437 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.03.016
  14. S. J. Kim, Y. J. Kwak, T. Y. Kim, W. S. Jung, K. Y. Kim, Surface darkening phenomenon of Zn-Mg alloy coated steel exposed to aqueous environment at high temperature, Journal of Materials Research, 30, 3605 (2015). Doi: https://doi.org/10.1557/jmr.2015.356
  15. N. C. Hosking, M. A. Strom, P. H. Shipway, C. D. Rudd, Corrosion resistance of zinc-magnesium coated steel, Corrosion Science, 49, 3669 (2007). Doi: https://doi.org/10.1016/j.corsci.2007.03.032
  16. J. W. Lee, I. J. Son, S. J. Kim, Newly designed surface control using Si addition in trace quantity for Zn-2Al-3Mg alloy coated steel sheet with improved corrosion resistance, Applied Surface Science, 598, 153868 (2022). Doi: https://doi.org/10.1016/j.apsusc.2022.153868
  17. F. Thebault, B. Vuillemin, R. Oltra, C. Allely, K. Ogle, O. Heintz, Influence of magnesium content on the corrosion resistance of the cut-edges of Zn-Mg-coated steel, Corrosion Science, 97, 100 (2015). Doi: https://doi.org/10.1016/j.corsci.2015.04.019
  18. T. Prosek, A. Nazarov, U. Bexell, D. Thierry, J. Serak, Corrosion mechanism of model znic-magnesium alloy in atmospheric conditions, Corrosion Science, 50, 2216 (2008). Doi: https://doi.org/10.1016/j.corsci.2008.06.008
  19. J. Sullivan, S. Mehraban, J. Elvins, In situ monitoring if the microstructural corrosion mechanisms of znic-magnesium-aluminium alloy using time lapse microscopy, Corrosion Science, 53, 2208 (2011). Doi: https://doi.org/10.1016/j.corsci.2011.02.043
  20. X. Znang, C. Leygrf, I. O. Wallinder, Atmospheric corrosion of galfan coatings on steel in chloride-rich environment, Corrosion Science, 73, 62 (2013). Doi: https://doi.org/10.1016/j.corsci.2013.03.025
  21. M. Uranaka, T. Shimizu, Corrosion resistance of hot-dip Zn-6%Al-3%Mg alloy coated steel sheet used in automotive parts, Metallurgical Science and Technology, 30, 29 (2012).